Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Viruses ; 14(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2123875

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.


Asunto(s)
Células Epiteliales , Heparina , SARS-CoV-2 , Replicación Viral , Humanos , COVID-19 , Células Epiteliales/virología , Heparina/farmacología , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
2.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1338098

RESUMEN

INTRODUCTION: In primary ciliary dyskinesia (PCD) impaired mucociliary clearance leads to recurrent airway infections and progressive lung destruction, and concern over chronic airway infection and patient-to-patient transmission is considerable. So far, there has been no defined consensus on how to control infection across centres caring for patients with PCD. Within the BEAT-PCD network, COST Action and ERS CRC together with the ERN-Lung PCD core a first initiative has now been taken towards creating such a consensus statement. METHODS: A multidisciplinary international PCD expert panel was set up to create a consensus statement for infection prevention and control (IP&C) for PCD, covering diagnostic microbiology, infection prevention for specific pathogens considered indicated for treatment and segregation aspects. Using a modified Delphi process, consensus to a statement demanded at least 80% agreement within the PCD expert panel group. Patient organisation representatives were involved throughout the process. RESULTS: We present a consensus statement on 20 IP&C statements for PCD including suggested actions for microbiological identification, indications for treatment of Pseudomonas aeruginosa, Burkholderia cepacia and nontuberculous mycobacteria and suggested segregation aspects aimed to minimise patient-to-patient transmission of infections whether in-hospital, in PCD clinics or wards, or out of hospital at meetings between people with PCD. The statement also includes segregation aspects adapted to the current coronavirus disease 2019 (COVID-19) pandemic. CONCLUSION: The first ever international consensus statement on IP&C intended specifically for PCD is presented and is targeted at clinicians managing paediatric and adult patients with PCD, microbiologists, patient organisations and not least the patients and their families.

3.
Paediatr Respir Rev ; 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1671059

RESUMEN

CONTEXT: In contrast with other respiratory viruses, children infected with SARS-CoV-2 are largely spared from severe COVID-19. OBJECTIVES: To critically assess age-related differences in three host proteins involved in SARS-CoV-2 cellular entry: angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin. METHODS: We systematically searched Medline, Embase, and PubMed databases for relevant publications. Studies were eligible if they evaluated ACE2, TMPRSS2 or furin expression, methylation, or protein level in children. RESULTS: Sixteen papers were included. Age-dependent differences in membrane-bound and soluble ACE2 were shown in several studies, with ACE2 expression increasing with age. TMPRSS2 and furin are key proteases involved in SARS-CoV-2 spike protein cleavage. TMPRSS2 expression is increased by circulating androgens and is thus low in pre-pubertal children. Furin has not currently been well researched. LIMITATIONS: High levels of study heterogeneity. CONCLUSIONS: Low expression of key host proteins may partially explain the reduced incidence of severe COVID-19 among children, although further research is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA